IRDH International Journal of Technology, Agriculture & Natural Sciences

https://irdhjournals.com/ijtans Vol 2, No 2 (2025) : July. E-ISSN : 3032-2286

Implementation of an Image Processing System in Drone Battle Based on Ardupilot

Wikan Pambudi¹ and M Rizky Fitri Padillah²

* Correspondence Author: pambudiwikan0@gmail.com

^{1,2} Polytechnic of Indonesian Army (Politeknik Angkatan Darat), Indonesia

INDEXING	ABSTRACT
Keywords: Keyword 1; Image Processing Keyword Keyword 2; Drone Battle Keyword 3; Ardupilot Keyword 4; System Implementation	The aim of this research is to create an ArduPilot-based image processing system for drone combat that can detect, identify and track targets in real-time to improve navigation capabilities and combat strategies. This system will integrate drone hardware with image processing algorithms and cameras to detect target position and movement. Tests show that detection and maneuvering in dynamic combat conditions are better. It is hoped that this implementation will be an innovative solution for drone combat and additional applications such as surveillance and rescue missions.

Article History

Received 18 November 2024; Revised 07 December 2024; Accepted 31 December 2024; Publish 01 July 2025

INTRODUCTION

Drones have developed rapidly in the modern era and are increasingly being used in various industries, such as photography, delivery of goods, to military and competition applications, as well as researched by Kreps (2016); Vergouw *et al* (2016); Taufik *et al.*, (2018); Maghazei and Netland (2020); Javaid *et al.*, (2022); Wang *et al* (2023); and also Askerbekov *et al* (2024). The use of image processing or image processing on drones to support complex and dynamic activities is one technology that is increasingly attracting attention (Akbari *et al.*, 2016; Hassanalian and Abdelkefi, 2017; Munawar *et al.*, 2021; Zhang *et al.*, 2021; Mohsan *et al.*, 2023). According to the Ebeid *et al.* (2018), Cañas *et al.* (2020), Peksa and Mamchur (2024), Sadraey (2024), ArduPilot, an opensource software that helps navigate and control drones automatically, is one of the popular platforms for developing drone control systems.

Image processing can be useful for ArduPilot-based drones, especially in the context of drone combat, where drones must have the ability to detect, identify, and navigate surrounding objects or enemies independently, as well as described by Kafi (2015); Audronis (2017); Kesuma *et al.*, (2020); Abirami *et al* (2023). Drones can analyze images obtained from cameras in real-time using image processing systems (Chen, 2017). This allows drones to respond to situations quickly and effectively.

The aim of this research is to create and implement an image processing system for combat drones based on ArduPilot and provide its performance in various combat conditions (Yasa, 2022) With this system, drones are expected to demonstrate improvements in navigation, object avoidance, and target detection, which are important components for superiority in battle.

LITERATURE REVIEW

Based on Widiatmoko and Aulia (2023), and also Akbar (2024), control drones can be flown manually or automatically. If used, drones can be equipped with sensor cameras, allowing them to take pictures of their surroundings and collect visual data. After that, image processing can be applied to the image to do various things. The main goal of this research is to create an algorithm for detecting and following moving objects and apply it to drones. The first stage of this research is the development of drones and the creation of algorithms to detect and follow moving objects using the object's color features, as well as coding, indoor and outdoor experiments. The results of this research show that the algorithm and coding used can detect and follow moving objects.

RESEARCH METHOD

The aim of this research is to create and apply an Ardupilot-based image recording system for drone combat that can detect and respond to "enemy" objects in combat simulations. The process includes literature review, software and hardware design, indoor and outdoor system testing, data analysis to produce system robustness and accuracy, and documentation of results to support system development. Here are some previous authors:

- a. (Abrari, 2019): This research investigates a monitoring robot detection system that detects objects in front of it. An example is plants in greenhouse farming. In the field, observations and interviews were carried out to collect data. The resulting image is displayed on a monitor or cellphone for farmers and monitors to assess crop conditions, predict harvest time, and ensure that crops are growing well. Additionally, when manual monitoring is not possible during the day, this system helps farmers integrate more easily.
- b. (Sinaga and Sinurat, 2022): monitors parking lots with the Viola-Jones method, which improves detection performance with the Adaboost algorithm. This method is faster than pixel-based systems in classifying objects in images based on their features. The end result is data about occupied and empty parking locations.
- c. (Yuliani, 2022) Object tracking allows tracking the position of objects using the Mean Shift method, which is simple and cheap. Research shows that this technique can track objects non-rigidly at a certain speed, but requires manual object selection and does not apply ROI cropping to lighten the computation. For efficiency, the research developed an automatic tracking system that uses Mean Shift with a Raspberry Pi and a servo motor to automatically move the camera within a 180° range with an ROI.

RESULT AND DISCUSSION

Development of Object Detection Algorithms: Image processing based algorithms have been used successfully to detect object targets in drone combat. This algorithm has the ability to recognize certain colors and patterns on objects according to predetermined parameters. Once the algorithm is optimized, the object detection speed and object

recognition accuracy increase, allowing for faster response to enemy movements.

Photo Processing System Integration with Ardupilot: Data synchronization between the camera module and the drone control system allows successful integration between the two. Test results show that synchronization works well and the drone can detect and lock on targets during combat.

Camera Performance and Data Processing: Cameras installed on drones have the ability to capture real-time images, which are then processed by a mini-computer module, such as a Raspberry Pi, to recognize targets in a short time. Tests show that the process of sending images does not interfere with the drone's control, ensuring the drone remains stable during maneuvers.

CONCLUSION

The results of testing the image processing system on an Ardupilot-based drone show that this system is successful in detecting and tracking targets with very high speed and accuracy, especially in indoor conditions. However, for outdoor use, lighting must be improved so that the system can operate properly in a variety of environmental conditions.

ACKNOWLEDGMENT

I would like to thank everyone who has helped with this research, especially lecturers, supervisors, teaching staff, research colleagues, and people who helped in testing and evaluating the system. Additionally, I would like to thank my family for their prayers and help. We hope that the results of this research will be useful for the development of image storage systems and drone technology in the future.

REFERENCES

Articles from the Journals

- Abirami, P., Vadivu, K. S., Lalitha, R. H., Pushpavalli, M., Sivagami, P., Harikrishnan, R., & Ahmed, I. S. (2023, December). Interfacing a Flying Robot with OpenCV. In 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-11). IEEE.
- Akbari, Y., Almaadeed, N., Al-Maadeed, S., & Elharrouss, O. (2021). Applications, databases and open computer vision research from drone videos and images: a survey. *Artificial Intelligence Review*, *54*, 3887-3938.
- Askerbekov, D., Garza-Reyes, J. A., Ghatak, R. R., Joshi, R., Kandasamy, J., & de Mattos Nascimento, D. L. (2024). Embracing drones and the Internet of drones systems in manufacturing—An exploration of obstacles. *Technology in Society*, 78, 102648.
- Cañas, J. M., Martín-Martín, D., Arias, P., Vega, J., Roldán-Álvarez, D., García-Pérez, L., & Fernández-Conde, J. (2020). Open-source drone programming course for distance engineering education. *Electronics*, 9(12), 2163
- Chen, P., Dang, Y., Liang, R., Zhu, W., & He, X. (2017). Real-time object tracking on a drone with multi-inertial sensing data. *IEEE Transactions on Intelligent Transportation Systems*, 19(1), 131-139.
- Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., & Schultz, U. P. (2018). A survey of open-source UAV flight controllers and flight simulators. *Microprocessors and Microsystems*, 61, 11-20.

- Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. *Progress in Aerospace sciences*, *91*, 99-131.
- Javaid, M., Khan, I. H., Singh, R. P., Rab, S., & Suman, R. (2022). Exploring contributions of drones towards Industry 4.0. *Industrial Robot: the international journal of robotics research and application*, 49(3), 476-490.
- Kesuma, P. R., Dewi, T., Kusumanto, R. D., Risma, P., & Oktarina, Y. (2020). Desain Fuzzy Logic Controller Untuk Pengendali Pergerakan Mobile Manipulator. *Journal Of Applied Smart Electrical Network And System (Jasens) Vol.*, 1(1), 12-18.
- Maghazei, O., and Netland, T. (2020). Drones in manufacturing: Exploring opportunities for research and practice. *Journal of Manufacturing Technology Management*, 31(6), 1237-1259.
- Munawar, H. S., Hammad, A. W., & Waller, S. T. (2021). A review on flood management technologies related to image processing and machine learning. *Automation in Construction*, *132*, 103916.
- Mohsan, S. A. H., Othman, N. Q. H., Li, Y., Alsharif, M. H., & Khan, M. A. (2023). Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. *Intelligent Service Robotics*, 16(1), 109-137.
- Peksa, J., & Mamchur, D. (2024). A Review on the State of the Art in Copter Drones and Flight Control Systems. *Sensors*, 24(11), 3349.
- Sinaga, T. H. W., and Sinurat, S. (2022). Implementasi Metode Viola Jones Untuk Perancangan Sistem Pemantauan Tempat Parkir Berdasarkan Digital Image Processing. *Bulletin of Multi-Disciplinary Science and Applied Technology*, 1(2), 54-59.
- Vergouw, B., Nagel, H., Bondt, G., & Custers, B. (2016). Drone technology: Types, payloads, applications, frequency spectrum issues and future developments. *The future of drone use: Opportunities and threats from ethical and legal perspectives*, 21-45.
- Wang, J., Zhou, K., Xing, W., Li, H., & Yang, Z. (2023). Applications, evolutions, and challenges of drones in maritime transport. *Journal of Marine Science and Engineering*, 11(11), 2056.
- Widiatmoko, D., & Aulia, W. (2023). Teknologi Rancang Bangun Drone Air Dengan Remote Control Menggunakan Sistem Ballast Tank: Elkasista. *Jurnal Elkasista*, 4(1), 8-15.
- Zhang, C., Valente, J., Kooistra, L., Guo, L., & Wang, W. (2021). Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. *Precision agriculture*, 22(6), 2007-2052.

Repository

- Abrari, M. G. (2019). Rancang Bangun Unmanned Aerial Vehicle Berbasis Image Processing Untuk Estimasi Hasil Panen. http://repository.polmanbandung.ac.id/file_publikasi/9926652Jurnal_TA_Muhammad%20Giriarda%20A_21 5441928.pdf
- Akbar, M.A. (2024). Rancang Bangun Drone Air Dengan Remote Control Menggunakan Sistem Ballast Tank. *Poltekad Kodiklatad*. Https://Repo.Poltekad.Ac.Id/207/
- Yuliani, F. (2022). Analisis Dan Implementasi Object Tracking Pada Kamera Webcam Dengan Image Processing Menggunakan Metode Mean Shift. https://dspace.uii.ac.id/handle/123456789/40453

Proceeding

Taufik, A., Tandioga, R., Nugraha, I., & Utomo, A. T. (2018, December). Drone Pengikut Objek Berbasis Image Processing. In *Seminar Nasional Hasil Penelitian & Pengabdian Kepada Masyarakat (Snp2m)* (Vol. 3, No. 1).

Published Books

Audronis, T. (2017). Designing Purpose-built Drones for Ardupilot Pixhawk 2.1: Build Drones with Ardupilot. Packt Publishing Ltd.

Kreps, S. E. (2016). Drones: What Everyone Needs To Know. Oxford University Press.

Sadraey, M. H. (2024). Microcontroller Boards. In *Unmanned Aircraft Design: A Review Of Fundamentals* (Pp. 151-169). Cham: Springer International Publishing.

Doctoral Dissertation

- Kafi, A. H., Monowar, M. I., Antara, R. S. I., & Maruf, M. M. (2015). *Uav Based Remote Sensing For Developing Countries* (Doctoral Dissertation, Brac University).
- Yasa, K. P. D. (2022). Penerapan Drone Berbasis Internet of Things untuk Pengantaran Barang Secara Otomatis (Doctoral dissertation, Politeknik Negeri ujung Pandang).