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This paper presents the design and implementation of a cart inverted 

pendulum system using an ESP32 microcontroller and a brushless DC 

(BLDC) motor with a Vedder Electronic Speed Controller (VESC). The 

cart inverted pendulum is a well-known benchmark problem in control 

theory due to its nonlinear, unstable, and underactuated nature. The ESP32 

System-on-Chip (SoC) is chosen for its high processing power, low-cost, 

and low-power characteristics, making it suitable for real-time control 

applications. The BLDC motor, coupled with the VESC, provides efficient 

and precise actuation for the cart inverted pendulum system. The VESC, 

an open-source motor controller, offers advanced control algorithms and 

hardware upgrades that enable accurate current, position, and speed 

control. Integrating the ESP32 and BLDC motor with VESC in the cart 

inverted pendulum design addresses the need for more efficient and cost-

effective solutions in this field. The paper discusses the hardware design, 

software design using FreeRTOS and serial communication, and presents 

the results of the hardware and software evaluation. The findings of this 

study contribute to the advancement of control theory and its applications 

in various domains, such as robotics and electric vehicles.  
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INTRODUCTION 

The cart inverted pendulum system is essential in control system design due to its 

nonlinear, unstable, and underactuated nature, making it an ideal platform for testing 

various control algorithms (Fauziyah et al., 2020; Siradjuddin, Amalia, Rohadi, et al., 

2018). These systems challenge nonlinearity and underactuation, serving as 

benchmarks for evaluating control methods (Siradjuddin, Amalia, Setiawan, et al., 

2018a). The system's instability and non-minimum phase characteristics suit advanced 

control strategies (Banerjee & Pal, 2018; Brumand-Poor et al., 2023). Despite common 

use for linear control tests, the system's nonlinear behavior is evident when different 

pendulum responses arise from the same cart velocity, highlighting its research value 

in control theory. The system is a standard for control method design with applications 

like missile launchers and Segways, emphasizing its practical relevance (Caiado, 2012; 

Kuczmann, 2019; Ozana et al., 2021). It is vital to examine control strategies and 

advance control engineering. 

https://irdhjournals.com/
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The ESP32 System-on-Chip (SoC) is suitable for real-time control system 

implementation due to its high processing power from the dual-core Tensilica Xtensa 

LX6 microprocessor, facilitating complex control algorithms (Maier et al., 2017). This 

capability supports real-time digital proportional-integral control, as seen in advanced 

driving assistance algorithms for Active Front Steering and Rear Torque Vectoring (M. 

Choi & Choi, 2015; Her et al., 2015; Seo & Hwangbo, 2015). The SoC's low-cost, low-

power attributes are ideal for embedded systems and IoT projects. Although not 

specifically designed for real-time applications, its features, including Wi-Fi and 

Bluetooth, enable wireless control systems, as shown in the portable wireless 

oscilloscope project (Maier et al., 2017). Wireless connectivity benefits distributed 

control systems or remote monitoring and control applications. 

The ESP32's notable advantage is its capacity to handle multitasking, enhanced 

by the FreeRTOS operating system. FreeRTOS supports concurrent processes, enabling 

the development of responsive applications that efficiently manage multiple sensors 

and communication protocols. For instance, studies indicate that FreeRTOS integration 

on the ESP32 enhances digital output switching and analog-to-digital conversion 

performance, achieving high frequencies and low conversion times crucial for real-time 

applications (Lin & Wang, 2022; Miranda et al., 2021). This is particularly 

advantageous in situations that demand immediate responses, such as real-time motion 

detection and alerting in surveillance systems (Okokpujie et al., 2023). ESP32 

microcontrollers enable real-time processing and control, while BLDC motors provide 

efficient and precise actuation. BLDC motors surpass traditional DC motors in cart 

inverted pendulum systems with higher efficiency, better speed-torque characteristics, 

greater dynamic response, and longer operational life (Mostafapour et al., 2015). Their 

compact size and high torque-to-size ratio make them ideal for space and weight-

sensitive applications. Additionally, BLDC motors offer noiseless operation and 

broader speed ranges, beneficial which are for precise inverted pendulum control. 

The Vedder Electronic Speed Controller (VESC) is a highly effective open-

source motor controller for BLDC motors. Initially developed for electric skateboards, 

the VESC has been adapted for general robot control, providing high-speed, high-

torque, and high-output capabilities (D. Choi, 2020). Its open-source nature encourages 

collaborative development and continuous improvement, making it a cost-effective 

alternative to commercial products. The VESC's efficacy is due to its advanced control 

algorithms and hardware upgrades. The Myongji-VESC (MJ-VESC) variant features 

hardware enhancements for more accurate current control and advanced position and 

speed control algorithms, suitable for multi-axis robot systems. This reflects the trend 

of sophisticated BLDC motor control techniques, such as fuzzy voltage-based 

controllers and adaptive PID controllers, which outperform conventional PID 

controllers (Sebasthirani, 2024; Vimala et al., 2019). VESC's success as an open-source 

motor controller for BLDC motors is due to its collaborative development, cost-

effectiveness, and advanced control capabilities, making it suitable for various 

applications, from robotics to electric vehicles, fulfilling the need for precise and 

efficient motor control. The incorporation of ESP32 and BLDC motors with VESC in 

a cart inverted pendulum design may potentially yield more efficient and economically 

viable solutions for inverted pendulum systems. 

This paper investigates the development of a cart inverted pendulum system 

utilizing ESP32 and BLDC motor technology with a VESC controller. The document 

is structured as follows: The subsequent section presents the mathematical model of the 

cart inverted pendulum, followed by a description of the hardware configuration. The 

ensuing section delineates the proposed software architecture, which employs 
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freeRTOS and serial communication. An evaluation of both hardware and software 

components is presented in the results and discussion section. The final section 

concludes the study. 

 

LITERATURE REVIEW  

Mathematical Model 

In control theory, the mathematical representation of the cart inverted pendulum 

system is a crucial field of research, particularly because of its natural instability and 

intricate dynamic behavior. When designing the hardware for a cart inverted pendulum, 

the mathematical model plays a key role in determining which sensors can be 

appropriately chosen to obtain the system's inputs. 

The cart inverted pendulum consists of a cart that can move horizontally along a 

track, with a pendulum attached to it that is free to pivot about a fixed point. This system 

serves as an excellent benchmark for testing various control strategies due to its non-

linear characteristics and the challenges associated with maintaining balance.  To derive 

the mathematical model of the cart inverted pendulum, one commonly employs the 

principles of Lagrangian mechanics. The Lagrangian ℒ  is defined as the difference 

between the kinetic energy 𝒯 and potential energy 𝒱 of the system. The kinetic energy 

of the cart and pendulum can be expressed in terms of their masses and velocities, while 

the potential energy is related to the height of the pendulum's center of mass. The 

equations of motion can be derived from the Euler-Lagrange equations, leading to a set 

of nonlinear differential equations that describe the dynamics of the system (He et al., 

2023).  The state-space representation of the cart inverted pendulum is particularly 

useful for implementing control strategies. In this representation, the state vector 

typically includes the position of the cart, the angle of the pendulum, and their 

respective velocities. The state-space model can be expressed in the form:   

𝑥̇ = 𝐴𝑥 + 𝐵𝑢  

𝑦 = 𝐶𝑥 + 𝐷𝑢 

Where 𝑥 is the state vector, 𝑢 is the control input (force applied to the cart), and 𝐴, 𝐵, 

𝐶 and 𝐷 are matrices that define the system dynamics. This formulation allows for the 

application of various control techniques, such as Linear Quadratic Regulator (LQR) 

and PID control, to stabilize the pendulum in its upright position (Siradjuddin, Amalia, 

Setiawan, et al., 2018b).  The control strategies for the cart inverted pendulum often 

focus on achieving stability through feedback mechanisms. For instance, the LQR 

method optimizes the control input by minimizing a cost function that penalizes 

deviations from desired states and excessive control efforts ((Shi et al., 2014). Research 

has shown that LQR can effectively stabilize the system while maintaining robustness 

against disturbances. Additionally, augmented PID control schemes have been 

demonstrated to enhance system performance by adjusting the control parameters based 

on the current state of the pendulum and cart.  Furthermore, the cart inverted pendulum 

system can be characterized as a single-input, multi-output (SIMO) system, where the 

control input is the force applied to the cart, and the outputs are the cart's position and 

the pendulum's angle.  

 

 

 

 



83 

 

Lagrange Equation 

 

Figure 1. Cart-Inverted Pendulum Diagram 

(Source : Author’s Documentation, 2024) 

 

The dynamical model of the cart-inverted pendulum is derived based on the diagram 

presented in Figure 1. Utilizing Lagrangian mechanics, the dynamics of the cart-inverted 

pendulum can be expressed as 

(𝑀 +𝑚)𝑥̈𝑀 −𝑚𝑙𝜃̈cos𝜃 +𝑚𝑙𝜃
2sin𝜃 + 𝑏1𝑥̇𝑀 = 𝑢 

−𝑚𝑙𝑥̈𝑀cos𝜃 +𝑚𝑙2𝜃̈ + 𝑏2𝜃 −𝑚𝑔𝑙sin𝜃 = 0 

Where 𝑀  and 𝑚  are the cart and pendulum masses, respectively. The massless 

pendulum rod length is denoted by 𝑙. The cart position 𝑥𝑀 is expressed concerning the 

reference frame origin. 𝜃  denotes the angle of the pendulum measured around the 

vertical axis (the positive direction of the angle is counterclockwise).  𝑔 denotes the 

gravity. 𝑏1 and 𝑏2 express the translational and rotational friction coefficients. Single 

and double dots are used to denote first and second derivatives, respectively. The state-

space model can be derived by linearizing the dynamic model at the desired state 

(upright pendulum position, with zero velocities and accelerations), which can be 

expressed as 
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The primary components of the cart-inverted pendulum platform design consist of a 

BLDC motor, an absolute encoder, an incremental encoder, an aluminum V-Slot 2040, 

a V-Slot gantry plate kit, belt HTD5M, and pulleys. Figure 2 depicts the front normal 

view of the platform. An incremental encoder AMT103 was attached to the output shaft 
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of the gear reduction, with a reduction ratio of 15:50. The incremental encoder was 

utilized to measure the cart position 𝑥𝑀  and velocity 𝑥̇𝑀 . Two limit switches were 

situated at both extremities of the V-Slot rail. The limit switches were implemented for 

safety purposes and cart position calibration. 

 

Hardware Design 

 

Figure. 2 Normal front view of the cart-inverted pendulum design 

(Source : Author’s Documentation, 2024) 

 

 

Figure 3. Isometric back view of the cart-inverted pendulum design 

(Source : Author’s Documentation, 2024) 

 

Figure 3 illustrates the platform isometric back view. An absolute encoder AMT223 

was positioned on the center top of the V-Slot gantry plate to measure the pendulum 

angle 𝜃. 
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Figure 4. Circuit block diagram 

(Source : Author’s Documentation, 2024) 

 

Figure 4 illustrates the circuit block diagram of the cart inverted pendulum system. 

The control algorithms are executed by a computer, which communicates with an 

ESP32 via a serial connection to exchange sensor data and control instructions. The 

ESP32 interfaces with two encoders: a quadrature encoder AMT103, utilizing 2 GPIO 

pins connected to its A and B terminals, and an absolute encoder AMT223, employing 

SPI communication. To implement SPI on the ESP32, specific GPIO pins are 

configured for the protocol's roles, typically using four pins: MOSI, MISO, SCK, and 

SS. The ESP32 and VESC devices exchange commands and data through UART serial 

communication. A 24V DC power supply energizes the BLDC motor. 

 

SOFTWARE DESIGN 

The system's architecture consists of ESP32 firmware and a Python class library. 

These elements enable basic data exchanges through serial communication, allowing 

for the transmission of duty cycle instructions to the VESC and the collection of sensor 

data. Two primary serial commands are utilized: 

1. "GET" is used to obtain sensor readings and limit switch states. 

2. "M, X" is employed to send control commands to the VESC, where "X" 

represents a float value for the duty cycle. This value ranges from -1.0 to 1.0, 

with negative values indicating reverse motor rotation. 

On the ESP32 firmware side, six freeRTOS tasks were created: readSerial, sendSerial, 

readAbsoluteEncoderTask, readIncrementalEncoderTask, readLimitSwitchTask, 

vescTask ,and writeOLED. The diagram in Figure 4 shows the connection and data 

flow of the firmware.  
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Figure 5. FreeRTOS tasks 

(Source : Author’s Documentation, 2024) 

 

The readSerial function operates by continuously monitoring and collecting serial 

data, while also clearing the message buffer once processing is complete. A segment of 

the firmware code is provided to illustrate the functionality of the readSerial task. 

#if CONFIG_FREERTOS_UNICORE 
static const BaseType_t app_cpu = 0; 
#else 
static const BaseType_t app_cpu = 1; 
#endif 
// Settings 
static const uint8_t buf_len = 255; 
// Globals 
static char *msg_ptr = NULL; 
static volatile uint8_t msg_flag = 0; 
void setup() { 
 Serial.begin(115200); 
 xTaskCreatePinnedToCore(readSerial, "Read Serial", 4096, NULL, 1, 
&readSerialHandle, app_cpu); 
} 
void loop() { 
  // Execution should never get here 
} 
// Task: read message from Serial buffer 
void readSerial(void *parameters) { 
  char c; 
  char buf[buf_len]; 
  uint8_t idx = 0; 
  // Clear whole buffer 
  memset(buf, 0, buf_len); 
  // Loop forever 
  while (1) { 
    // Read characters from serial 
    if (Serial.available() > 0) { 
      c = Serial.read(); 
      // Store received character to buffer if not over buffer limit 
      if (idx < buf_len - 1) { 
        buf[idx] = c; 
        idx++; 
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      } 
      // Create a message buffer for print task 
      if (c == '\n') { 
        // The last character in the string is '\n', so we need to replace 
        // it with '\0' to make it null-terminated 
        buf[idx - 1] = '\0'; 
        // Try to allocate memory and copy over message. If message buffer is 
        // still in use, ignore the entire message. 
        if (msg_flag == 0) { 
          msg_ptr = (char *)pvPortMalloc(idx * sizeof(char)); 
          // If malloc returns 0 (out of memory), throw an error and reset 
          configASSERT(msg_ptr); 
          // Copy message 
          memcpy(msg_ptr, buf, idx); 
          // Notify other task that message is ready 
          msg_flag = 1; 
        } 
        // Reset receive buffer and index counter 
        memset(buf, 0, buf_len); 
        idx = 0; 
      } 
    } 
  } 
} 

 

The input buffer's maximum length is set to 255 characters by buf_len. A pointer called 

msg_ptr is utilized to hold dynamically allocated message data. The volatile variable 

msg_flag indicates whether a new message is ready for processing, with 1 signifying 

readiness and 0 indicating otherwise. The readSerial task is created and assigned to a 

specific CPU core using xTaskCreatePinnedToCore, with parameters including the task 

function, name, stack size (4096 bytes), parameters (NULL), priority (1), and handle 

(&readSerialHandle). When msg_flag is 0, indicating no current message processing, 

memory for msg_ptr is dynamically allocated using pvPortMalloc. The 

configASSERT() function checks for successful memory allocation, triggering an error 

and system reset if unsuccessful. The message is then transferred from buf to msg_ptr, 

and msg_flag is set to 1 to indicate a new message's readiness. Finally, the buffer (buf) 

is cleared using memset, and idx is reset to 0 in preparation for the next message. 

The computer transmitted a command through a serial connection, which was then 

verified using a parsing algorithm. This algorithm was incorporated into the sendSerial 

task function. The code for the sendSerial function follows. 

void sendSerial(void *parameters) { 
  while (1) { 
    // Wait for flag to be set and print message 
    if (msg_flag == 1) { 
      // Serial.println(msg_ptr); 
      // Parse command and value 
      char *token = strtok(msg_ptr, ","); 
      if (token != NULL) { 
        strcpy(command, token); 
        String cmd = String(command); 
        cmd.trim(); 
        cmd.toUpperCase(); 
        token = strtok(NULL, ","); 
        if (token != NULL) { 
          value = atof(token);  // Convert to float 
          if (cmd == "Z") { 
            setZeroSPI(cs_pin); 
            vTaskDelay(50 / portTICK_PERIOD_MS);  
          } else if (cmd == "M") { 
            dutyVal = float(value); 
          } 
        } 
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        if (cmd == "GET") { 
          Serial.printf("sensor,%u, %ld, %u\n", 
                        sensorData.absoluteVal, 
                        sensorData.incrementalVal, 
                        sensorData.limitSwitchStat); 
        } 
        vTaskDelay(2 / portTICK_PERIOD_MS);  // Adjust delay as necessary 
      } 
      vPortFree(msg_ptr); 
      msg_ptr = NULL; 
      msg_flag = 0; 
    } 
  } 
} 

 

The `sendSerial` function operates as a FreeRTOS task, designed to interpret serial 

commands received by an Arduino ESP32. These commands are stored in the global 

`msg_ptr` variable, which is populated by the `readSerial` function. The task initiates 

by verifying if `msg_flag` is set to 1, signaling that a new message is available for 

processing. The incoming message is then segmented using `strtok(msg_ptr, ",")`, 

separating it based on commas. The initial segment is expected to be the command, 

with subsequent segments potentially containing related parameters or values. Upon 

successful extraction of a segment, it is copied into a `command` array using `strcpy`. 

To ensure uniform command handling, the command string undergoes trimming and is 

converted to uppercase, making it case-insensitive. The next segment is extracted as the 

expected value using `strtok(NULL, ",")`. If a value is present, it's converted to a float 

using `atof(token)`. The task then responds to specific parsed commands (`cmd`): For 

"Z", it invokes `setZeroSPI(cs_pin)`, which zeros the value of an absolute encoder 

controlled via SPI. A 50-millisecond delay is implemented using ̀ vTaskDelay` to allow 

the operation to complete. For "M", it assigns the received float `value` to a global 

variable `dutyVal`, adjusting the output duty cycle for a BLDC controller through 

VESC. For "GET", it transmits a formatted string back to the serial console, containing 

sensor data including fields like ̀ absoluteVal`, ̀ incrementalVal`, and ̀ limitSwitchStat`. 

After processing, the memory allocated for the message (`msg_ptr`) is freed using 

`vPortFree()` to prevent memory leaks. Finally, `msg_ptr` is set to `NULL`, and 

`msg_flag` is reset to 0, indicating that the message has been processed and the system 

is ready for the next command. 

The following codes are readLimitSwitchTask and vescTask function implementations. 

// Task to read limit switch 1 
void readLimitSwitchTask(void *pvParameters) { 
  while (true) { 
    leftSwitch = digitalRead(leftSwitch_pin); 
    rightSwitch = digitalRead(rightSwitch_pin); 
    sensorData.limitSwitchStat = 0b00000000; 
    bitWrite(sensorData.limitSwitchStat, 0, leftSwitch); 
    bitWrite(sensorData.limitSwitchStat, 1, rightSwitch); 
    vTaskDelay(1 / portTICK_PERIOD_MS);   
  } 
} 
void vescTask(void *pvParameters) { 
  while (true) { 
    VescUART.setDuty(dutyVal); 
    //vTaskDelay(1 / portTICK_PERIOD_MS); 
  } 
} 
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The VescUART.h library enables the management of BLDC motors controlled by a 

VESC through UART communication, allowing for motor speed adjustments via the 

setDuty() function. VESC employs a serial communication protocol, typically over 

UART, to accept instructions and setup parameters from a microcontroller like the 

ESP32. It utilizes a specific packet format that incorporates command types and related 

data to regulate various motor attributes, including speed, current, and duty cycle. The 

ESP32 leverages its built-in UART capabilities for data transmission and reception, 

operating at a specified baud rate (often 115200 for VESC). The UART pins (such as 

TX and RX) are linked to the VESC, enabling two-way communication. The 

writeOLED task displays continuously the sensor states which can be obtained from 

the data struct named SensorDataStruct. The following piece of code describes the 

implementation of  the writeOLED function and SensorDataStruct declaration. 

// Define the sensor data structure 
struct SensorDataStruct { 
  uint16_t absoluteVal;  // Value from the absolute encoder 
  long incrementalVal;   // Value from the incremental encoder 
  byte limitSwitchStat;  // Status of the limit switches 
}; 
  
// Global variable to hold sensor data 
volatile SensorDataStruct sensorData; 
  
// Write the sensor data OLED 
void writeOLED(void *pvParameters) { 
  display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS); 
  display.display(); 
  vTaskDelay(1000 / portTICK_PERIOD_MS); 
  // Clear the buffer 
  display.clearDisplay(); 
  display.setTextSize(1);               // Normal 1:1 pixel scale 
  display.setTextColor(SSD1306_WHITE);  // Draw white text 
  display.setCursor(0, 0); 
  display.println("Hello World"); 
  display.display(); 
  vTaskDelay(1000 / portTICK_PERIOD_MS); 
  for (;;) { 
    display.clearDisplay(); 
    display.setCursor(0, 0); 
    display.println("Sensor Data"); 
    display.print(sensorData.absoluteVal); 
    display.print(", "); 
    display.print(sensorData.incrementalVal); 
    display.print(", "); 
    display.println(sensorData.limitSwitchStat); 
    display.println("Incoming Command"); 
    display.print(command); 
    display.print(", "); 
    display.println(value); 
    display.display(); 
    vTaskDelay(100 / portTICK_PERIOD_MS); 
  } 
} 
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RESULTS AND DISCUSSION 

 

Figure 6. Mechanical System of Cart Inverted Pendulum 

(Source : Author’s Documentation, 2024) 

 

Figure 6 shows the realization of the design of the tool that has been created to 

support this research. There are several mechanical parts of the designed inverted 

pendulum cart, which consist of 3D Printed Pulley Block, cart, and 3D Printed 

Centering Block. The 3D Printed Pulley Block frame is made of a 1.5 mm iron plate, 

and PLA+. On the 3D Printed Pulley Block Frame, there is also a gear reduction to 

improve performance, namely the M1 15T and 50T spur gears. The input gear reduction 

is connected to the N5065 5065 270kv Brushless Motor and the output gear reduction 

will be one shaft with the timing of the HTD5M 10T pulley which will be installed in 

a circle on the 3D Printed Centering Block and cart as many as 4 pieces.  

The cart line uses an Aluminum slot profile 2040 V-slot.  The Cart uses 2 pieces 

of 40 mm Universal Plate Gantry which is connected by bolts and support nuts along 

with V-wheel solid wheels that will be connected to aluminum slot profiles. The 

pendulum mount is made of PLA+ which is given a Flanged F688zz bearing and an 

8mm stainless rod as the pendulum arm shaft so that the pendulum can move freely 

until it reaches the inverted position. The connection of the stainless rod of the 

pendulum shaft and the aluminum sleeve of the pendulum rod is connected with the 

PLA+ part. The cart also has an HTD5M belt lock that connects 3 parts made of PLA+.  

The 3D Printed Centering Block section has a main frame made of PLA+ and 

iron plates as well as free bearing and timing pulleys that function as a counterweight 

to the 3D Printed Pulley Block. These components are designed to ensure stability, 

strength, and accuracy during operation. This designed component is also equipped 

with the need for nut holes and locking bolts that will connect the sensor and parts. In 

addition, the mechanical system is assisted by locking on the 3D Printed Pulley Block 

and 3D Printed Centering Block to connect the table and cart inverted pendulum so that 

the cart inverted pendulum does not experience a shift in the cart inverted pendulum. 

https://www.aluxprofile.com/aluminium-slot-profile-2040-v-slot-black/a3958
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Figure 7. Electrical System of Cart Inverted Pendulum 

(Source : Author’s Documentation, 2024) 

 

Figure 7 shows the electrical system that will support the operation of the 

appliance. This electrical system is made to control the inverted pendulum cart. The 

components used are designed to work together efficiently to maintain the balance of 

the pendulum and control the movement of the cart. The output voltage is connected to 

the input from the BLDC driver motor and the step-down voltage to meet the voltage 

required in the microcontroller, sensor, and voltage converter.  

In this system, an actuator in the form of a BLDC N5065 270kv motor is used as 

a driving force. To control the motorcycle, a motorcycle driver called an Electronic 

Speed Controller (ESC) is used, namely FSESC Flipsky 4.12. The Communication pin 

is connected to the ESP32-S3 with the UART Serial using the RX, TX, and GND pins.  

The 3-phase FSESC output is connected to a 270kv N5065 BLDC motor. The ESC will 

process the read sensor data and will communicate the data through the communication 

pins. The ESC will also receive the microcontroller feedback to command the BLDC 

motor.  

 

Figure 8. Main Board System of Cart Inverted Pendulum 

(Source : Author’s Documentation, 2024) 

 

The main board controller is a main board controller of the system, where all 

commands are executed and processed. In this mainboard system, there is the brain of 

the system, namely the ESP32-S3 microcontroller. The ESP32-S3 will process the data 

read by the AMT223, AMT103, and limit switch sensors. The ESP 32 pins used are 

GPIO 10, GPIO 11, GPIO 12, GPIO 13, VCC, and GND pins connected to the AMT103 

sensor pins to measure the rotational speed of the motor. GPIO 9, GPIO8, VCC and 

GND pins are connected  to OLED displays.  The GPIO 5 and VCC pins are connected 

to the left limit switch and the GPIO 4 and VCC pins are connected to the right limit 
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switch used as a buffer or emergency switch. 

The AMT223 encoder sensor is used to detect angles on the pendulum shaft. The 

encoder sensor is connected to a voltage converter which is used as a voltage converter 

from 5V (encoder output) to 3.3V (ESP32-S3 input). This system voltage converter is 

used because the ESP32-S3 operates at a logic voltage of 3.3V, so a level shifter is 

required for signal compatibility. The wiring circuit is designed using PCB boards to 

integrate components, ensuring the flow of data and energy runs efficiently. In addition, 

the appliance is equipped with a 24 Volt 10A DC Power Supply power source that 

provides stable energy. The power requirements of the components used in the circuit 

PCB vary between 3.3 – 5 Volts, therefore the LM2596 stepdown is used. 

Communication between the sensor and the ESP32-S3 is regulated through the SPI 

communication protocol, while FSESC and ESP communication uses Serial UART 

which allows the tool to work automatically and in real-time.  

To improve the precision of the cart in balancing the pendulum, the ESP32-S3 

microcontroller must generate a PWM signal with a duty cycle that matches the control 

algorithm. To integrate FSESC data with ESP32 there are several commands namely 

"vesc.getVescValues()". PWM signals with the appropriate duty cycle will be used by 

the motor driver to control the power provided to the motor. The duty cycle is the 

percentage of signal time at a "high" condition for a full period that has been set. The 

duty cycle will affect current and ERPM. The highest duty cycle value set is 90%. The 

experiment of the effect of the duty cycle percentage can be seen in figure 9 below. 
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Figure 9. Graph Effect of Duty Cycle Percentage on Current and ERPM. 

(Source : Author’s Documentation, 2024) 

 

From the experiment on the influence of the duty cycle on current and ERPM 

values in BLDC motors above, it can be seen that the duty cycle value has an effect on 

the initial inlet current input to the motor. The input current of the motor will experience 

a surge at the beginning of the start and then it will be stable. The current value is lower 

than that of the current motor, which shows the suitability of the power conversion 

theory in VESC. The current value of the motor is greater than the current in, especially 

when the duty cycle is high. This is because the duty cycle increases the average voltage 

of the motor, so that the motor current rises to meet the required torque. This graph 

shows that each increase in the duty cycle affects the amount of current in and motor 

current. When the duty cycle is close to maximum, both the current in and the current 

motor reach its peak. 

The effect of duty cycle value on ERPM (Electrical Revolutions Per Minute) can 

be seen in Figure 9. From the graph above, it can be seen that the ERPM value will 

increase linearly with the duty cycle, which shows that the average stress to the motor 

(generated by the duty cycle) directly affects the rotational speed of the motor. This is 

by the characteristics of BLDC motors where the RPM is proportional to the average 

voltage applied. 
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Figure 10. Graph of the Effect of Continuous Duty Cycle on Currentand ERPM. 

(Source : Author’s Documentation, 2024) 

 

To find out the effect of the duty cycle further on continuous conditions, it can be 

seen in Figure 10. It can be seen that a continuous duty cycle will affect the value of the 

inrush current on the motor and will experience a surge. Then there is a stable position 

without a drastic decrease in current as well as ERPM and voltage. So from this 

condition it can look better, especially for the service life of BLDC motorcycles because 

there is very little voltage and current drop.  
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Figure 11. Graph Cycle Duty CW and CCW on Currentand ERPM. 

(Source : Author’s Documentation, 2024) 

 

Figure 11 is a duty cycle experiment on a BLDC motor with CW (clockwise) and 

CCW (counter clock wise) movements. On the basis of theory, controlling the direction 

of rotation of the motor can be done by controlling the commutation system. Where on 

the ESC driver there are transistors that will commutate alternately. If the motor is 

desired in the opposite direction or CCW then the transistor will be controlled to 

commute in reverse order. To reverse the commutation, the Duty cycle sent to the ESC 

is a positive value for CW and negative for CCW. So in Figure 11, it can be seen that a 

positive duty cycle produces a positive ERPM, while a negative duty cycle produces a 

negative ERPM (the motor rotates in the opposite direction). When the duty cycle 

returns to zero, the ERPM slowly decreases, which may be the result of mechanical 

friction or the influence of the load. 
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Figure 12. Graphs Duty Cycle CW and CCW with Fast Time 

(Source : Author’s Documentation, 2024) 

 

Figure 11 is a duty cycle experiment on a BLDC motor with CW (clockwise) and 

CCW (counter clock wise) movements. Based on theory, controlling the direction of 

rotation of the motor can be done by controlling the commutation system. Where on the 

ESC driver there are transistors that will commutate alternately. If the motor is desired 

in the opposite direction or CCW then the transistor will be controlled to commute in 

reverse order. To reverse the commutation, the Duty cycle sent to the ESC is a positive 

value for CW and negative for CCW. So in Figure 11, it can be seen that a positive duty 

cycle produces a positive ERPM, while a negative duty cycle produces a negative 

ERPM (the motor rotates in the opposite direction). When the duty cycle returns to zero, 

the ERPM slowly decreases, which may be the result of mechanical friction or the 

influence of the load. 
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CONCLUSION 

It has been shown that BLDC motors with VESC provide efficient and precise 

actuation for cart inverted pendulum systems. VESC can control accurate current, 

position, and speed through signal communication and input. The validity and 

advantages of the integration of ESP32 and BLDC motors with VESC in the design of 

the cart inverted pendulum have been verified with electrical, mechanical, and software 

systems. 
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