IRDH International Journal of Technology, Agriculture &

Natural Sciences
https://irdhjournals.com/ijtans
Vol 2, No 1 (2025) : March. E-ISSN : 3032-2286

Integrating ESP32 and VESC-Controlled BLDC Motors in

Cart Inverted Pendulum Design

Ida Lailatul Fitrial, Indrazno Siradjuddin?, Ferdian Ronilaya3® Gillang Al
Azhar?, Zakiyah Amalia®, Budhy Setiawan®

* Correspondence Author: idalailatul25@gmail.com

1245E|ectronics Engineering, State Polytechnic of Malang (Polinema), Malang, Indonesia

SElectrical Systems Engineering, State Polytechnic of Malang (Polinema), Malang, Indonesia
®Mechanical Engineering, State Polytechnic of Malang (Polinema), Malang, Indonesia

INDEXING ABSTRACT

Keywords: This paper presents the design and implementation of a cart inverted
Keyword 1; Cart Inverted Pendulum; | pendulum system using an ESP32 microcontroller and a brushless DC
Keyword 2; BLDC; (BLDC) motor with a Vedder Electronic Speed Controller (VESC). The
Keyword 3; Integrating ESP32; cart inverted pendulum is a well-known benchmark problem in control
Keyword 4; VESC Controlled; theory due to its nonlinear, unstable, and underactuated nature. The ESP32
Keyword 5; FreeRTOS; System-on-Chip (SoC) is chosen for its high processing power, low-cost,

and low-power characteristics, making it suitable for real-time control
applications. The BLDC motor, coupled with the VESC, provides efficient
and precise actuation for the cart inverted pendulum system. The VESC,
an open-source motor controller, offers advanced control algorithms and
hardware upgrades that enable accurate current, position, and speed
control. Integrating the ESP32 and BLDC motor with VESC in the cart
inverted pendulum design addresses the need for more efficient and cost-
effective solutions in this field. The paper discusses the hardware design,
software design using FreeRTOS and serial communication, and presents
the results of the hardware and software evaluation. The findings of this
study contribute to the advancement of control theory and its applications
in various domains, such as robotics and electric vehicles.
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INTRODUCTION

The cart inverted pendulum system is essential in control system design due to its
nonlinear, unstable, and underactuated nature, making it an ideal platform for testing
various control algorithms (Fauziyah et al., 2020; Siradjuddin, Amalia, Rohadi, et al.,
2018). These systems challenge nonlinearity and underactuation, serving as
benchmarks for evaluating control methods (Siradjuddin, Amalia, Setiawan, et al.,
2018a). The system’s instability and non-minimum phase characteristics suit advanced
control strategies (Banerjee & Pal, 2018; Brumand-Poor et al., 2023). Despite common
use for linear control tests, the system's nonlinear behavior is evident when different
pendulum responses arise from the same cart velocity, highlighting its research value
in control theory. The system is a standard for control method design with applications
like missile launchers and Segways, emphasizing its practical relevance (Caiado, 2012;
Kuczmann, 2019; Ozana et al., 2021). It is vital to examine control strategies and
advance control engineering.
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The ESP32 System-on-Chip (SoC) is suitable for real-time control system
implementation due to its high processing power from the dual-core Tensilica Xtensa
L X6 microprocessor, facilitating complex control algorithms (Maier et al., 2017). This
capability supports real-time digital proportional-integral control, as seen in advanced
driving assistance algorithms for Active Front Steering and Rear Torque Vectoring (M.
Choi & Choi, 2015; Her et al., 2015; Seo & Hwangbo, 2015). The SoC's low-cost, low-
power attributes are ideal for embedded systems and 0T projects. Although not
specifically designed for real-time applications, its features, including Wi-Fi and
Bluetooth, enable wireless control systems, as shown in the portable wireless
oscilloscope project (Maier et al., 2017). Wireless connectivity benefits distributed
control systems or remote monitoring and control applications.

The ESP32's notable advantage is its capacity to handle multitasking, enhanced
by the FreeRTOS operating system. FreeRTOS supports concurrent processes, enabling
the development of responsive applications that efficiently manage multiple sensors
and communication protocols. For instance, studies indicate that FreeRTOS integration
on the ESP32 enhances digital output switching and analog-to-digital conversion
performance, achieving high frequencies and low conversion times crucial for real-time
applications (Lin & Wang, 2022; Miranda et al., 2021). This is particularly
advantageous in situations that demand immediate responses, such as real-time motion
detection and alerting in surveillance systems (Okokpujie et al., 2023). ESP32
microcontrollers enable real-time processing and control, while BLDC motors provide
efficient and precise actuation. BLDC motors surpass traditional DC motors in cart
inverted pendulum systems with higher efficiency, better speed-torque characteristics,
greater dynamic response, and longer operational life (Mostafapour et al., 2015). Their
compact size and high torque-to-size ratio make them ideal for space and weight-
sensitive applications. Additionally, BLDC motors offer noiseless operation and
broader speed ranges, beneficial which are for precise inverted pendulum control.

The Vedder Electronic Speed Controller (VESC) is a highly effective open-
source motor controller for BLDC motors. Initially developed for electric skateboards,
the VESC has been adapted for general robot control, providing high-speed, high-
torque, and high-output capabilities (D. Choi, 2020). Its open-source nature encourages
collaborative development and continuous improvement, making it a cost-effective
alternative to commercial products. The VESC's efficacy is due to its advanced control
algorithms and hardware upgrades. The Myongji-VESC (MJ-VESC) variant features
hardware enhancements for more accurate current control and advanced position and
speed control algorithms, suitable for multi-axis robot systems. This reflects the trend
of sophisticated BLDC motor control techniques, such as fuzzy voltage-based
controllers and adaptive PID controllers, which outperform conventional PID
controllers (Sebasthirani, 2024; Vimala et al., 2019). VESC's success as an open-source
motor controller for BLDC motors is due to its collaborative development, cost-
effectiveness, and advanced control capabilities, making it suitable for various
applications, from robotics to electric vehicles, fulfilling the need for precise and
efficient motor control. The incorporation of ESP32 and BLDC motors with VESC in
a cart inverted pendulum design may potentially yield more efficient and economically
viable solutions for inverted pendulum systems.

This paper investigates the development of a cart inverted pendulum system
utilizing ESP32 and BLDC motor technology with a VESC controller. The document
is structured as follows: The subsequent section presents the mathematical model of the
cart inverted pendulum, followed by a description of the hardware configuration. The
ensuing section delineates the proposed software architecture, which employs
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freeRTOS and serial communication. An evaluation of both hardware and software
components is presented in the results and discussion section. The final section
concludes the study.

LITERATURE REVIEW
Mathematical Model

In control theory, the mathematical representation of the cart inverted pendulum
system is a crucial field of research, particularly because of its natural instability and
intricate dynamic behavior. When designing the hardware for a cart inverted pendulum,
the mathematical model plays a key role in determining which sensors can be
appropriately chosen to obtain the system's inputs.

The cart inverted pendulum consists of a cart that can move horizontally along a
track, with a pendulum attached to it that is free to pivot about a fixed point. This system
serves as an excellent benchmark for testing various control strategies due to its non-
linear characteristics and the challenges associated with maintaining balance. To derive
the mathematical model of the cart inverted pendulum, one commonly employs the
principles of Lagrangian mechanics. The Lagrangian £ is defined as the difference
between the kinetic energy 7" and potential energy V of the system. The kinetic energy
of the cart and pendulum can be expressed in terms of their masses and velocities, while
the potential energy is related to the height of the pendulum's center of mass. The
equations of motion can be derived from the Euler-Lagrange equations, leading to a set
of nonlinear differential equations that describe the dynamics of the system (He et al.,
2023). The state-space representation of the cart inverted pendulum is particularly
useful for implementing control strategies. In this representation, the state vector
typically includes the position of the cart, the angle of the pendulum, and their
respective velocities. The state-space model can be expressed in the form:

X =Ax + Bu

y =Cx+ Du

Where x is the state vector, u is the control input (force applied to the cart), and A, B,
C and D are matrices that define the system dynamics. This formulation allows for the
application of various control techniques, such as Linear Quadratic Regulator (LQR)
and PID control, to stabilize the pendulum in its upright position (Siradjuddin, Amalia,
Setiawan, et al., 2018b). The control strategies for the cart inverted pendulum often
focus on achieving stability through feedback mechanisms. For instance, the LQR
method optimizes the control input by minimizing a cost function that penalizes
deviations from desired states and excessive control efforts ((Shi et al., 2014). Research
has shown that LQR can effectively stabilize the system while maintaining robustness
against disturbances. Additionally, augmented PID control schemes have been
demonstrated to enhance system performance by adjusting the control parameters based
on the current state of the pendulum and cart. Furthermore, the cart inverted pendulum
system can be characterized as a single-input, multi-output (SIMO) system, where the
control input is the force applied to the cart, and the outputs are the cart's position and
the pendulum'’s angle.
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Lagrange Equation

|

Figure 1. Cart-Inverted Pendulum Diagram
(Source : Author’s Documentation, 2024)

The dynamical model of the cart-inverted pendulum is derived based on the diagram
presented in Figure 1. Utilizing Lagrangian mechanics, the dynamics of the cart-inverted
pendulum can be expressed as
(M + m)#y, — mlBcos8 + mlB?sing + byxy = u
—ml¥ycosd + mi?6 + b,0 — mglsind = 0

Where M and m are the cart and pendulum masses, respectively. The massless
pendulum rod length is denoted by [. The cart position x,, is expressed concerning the
reference frame origin. 6 denotes the angle of the pendulum measured around the
vertical axis (the positive direction of the angle is counterclockwise). g denotes the
gravity. b; and b, express the translational and rotational friction coefficients. Single
and double dots are used to denote first and second derivatives, respectively. The state-
space model can be derived by linearizing the dynamic model at the desired state
(upright pendulum position, with zero velocities and accelerations), which can be
expressed as
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9 mg b1 bz e 1
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The primary components of the cart-inverted pendulum platform design consist of a
BLDC motor, an absolute encoder, an incremental encoder, an aluminum V-Slot 2040,
a V-Slot gantry plate kit, belt HTD5M, and pulleys. Figure 2 depicts the front normal
view of the platform. An incremental encoder AMT103 was attached to the output shaft
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of the gear reduction, with a reduction ratio of 15:50. The incremental encoder was
utilized to measure the cart position x,, and velocity x,,. Two limit switches were
situated at both extremities of the V-Slot rail. The limit switches were implemented for
safety purposes and cart position calibration.

Hardware Design

| Pendulum rod

HTD5M Belt

(_)

Limit switches

Speed Reduction Gears

Figure. 2 Normal front view of the cart-inverted pendulum design
(Source : Author’s Documentation, 2024)

&= Avsolute Encoder

BLDC Motor

)

Aluminium V Slot 2040

\, V-Slot Gautry Plate Kit

Figure 3. Isometric back view of the cart-inverted pendulum design
(Source : Author’s Documentation, 2024)

Figure 3 illustrates the platform isometric back view. An absolute encoder AMT223
was positioned on the center top of the V-Slot gantry plate to measure the pendulum
angle 6.
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Figure 4. Circuit block diagram
(Source : Author’s Documentation, 2024)

Figure 4 illustrates the circuit block diagram of the cart inverted pendulum system.
The control algorithms are executed by a computer, which communicates with an
ESP32 via a serial connection to exchange sensor data and control instructions. The
ESP32 interfaces with two encoders: a quadrature encoder AMT103, utilizing 2 GPIO
pins connected to its A and B terminals, and an absolute encoder AMT223, employing
SPI communication. To implement SPI on the ESP32, specific GPIO pins are
configured for the protocol's roles, typically using four pins: MOSI, MISO, SCK, and
SS. The ESP32 and VESC devices exchange commands and data through UART serial
communication. A 24V DC power supply energizes the BLDC motor.

SOFTWARE DESIGN

The system's architecture consists of ESP32 firmware and a Python class library.
These elements enable basic data exchanges through serial communication, allowing
for the transmission of duty cycle instructions to the VESC and the collection of sensor
data. Two primary serial commands are utilized:

1. "GET" is used to obtain sensor readings and limit switch states.

2. "M, X" is employed to send control commands to the VESC, where "X"
represents a float value for the duty cycle. This value ranges from -1.0 to 1.0,
with negative values indicating reverse motor rotation.

On the ESP32 firmware side, six freeRTOS tasks were created: readSerial, sendSerial,
readAbsoluteEncoderTask, readincrementalEncoderTask, readLimitSwitchTask,
vescTask ,and writeOLED. The diagram in Figure 4 shows the connection and data
flow of the firmware.
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Task: writeOLED

Task: read AbsoluteEncoderTask

atruct SensorDataStruct { abaoluteVal

uint16_t absoluteVal;
SBensorDataStruct sensorData; :

byte limitSwitchStat;
b

long incrementalVal;
incremental Val

Task: readIncremental EncoderTask

Task: sendSerial

Task: readSerial limitSwitchStat Task: readLimitSwitchTask

Task: vescTask

float dutyVal

Parsing
= char msg_ptr

Figure 5. FreeRTOS tasks
(Source : Author’s Documentation, 2024)

The readSerial function operates by continuously monitoring and collecting serial
data, while also clearing the message buffer once processing is complete. A segment of
the firmware code is provided to illustrate the functionality of the readSerial task.

#if CONFIG_FREERTOS_UNICORE

static const BaseType_t app_cpu = 0;
ttelse
static const BaseType_t app_cpu = 1;
t#tendif

// Settings
static const uint8_t buf_len = 255;
// Globals
static char *msg_ptr = NULL;
static volatile uint8_t msg_flag = 0;
void setup() {
Serial.begin(115200);
xTaskCreatePinnedToCore(readSerial, "Read Serial", 4096, NULL, 1,
&readSerialHandle, app_cpu);
}
void loop() {
// Execution should never get here
¥

// Task: read message from Serial buffer
void readSerial(void *parameters) {
char c;
char buf[buf_len];
uint8_t idx = 9;
// Clear whole buffer
memset (buf, @, buf_len);
// Loop forever
while (1) {
// Read characters from serial
if (Serial.available() > 9) {
¢ = Serial.read();
// Store received character to buffer if not over buffer limit
if (idx < buf_len - 1) {
buf[idx] = c;
idx++;
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// Create a message buffer for print task
if (¢ == "\n") {
// The last character in the string is '\n', so we need to replace
// it with '\@' to make it null-terminated
buf[idx - 1] = "\@';
// Try to allocate memory and copy over message. If message buffer is
// still in use, ignore the entire message.
if (msg_flag == 0) {
msg_ptr = (char *)pvPortMalloc(idx * sizeof(char));
// If malloc returns @ (out of memory), throw an error and reset
configASSERT (msg_ptr);
// Copy message
memcpy (msg_ptr, buf, idx);
// Notify other task that message is ready
msg_flag = 1;
¥
// Reset receive buffer and index counter
memset (buf, 0, buf_len);
idx = 9;

The input buffer's maximum length is set to 255 characters by buf_len. A pointer called
msg_ptr is utilized to hold dynamically allocated message data. The volatile variable
msg_flag indicates whether a new message is ready for processing, with 1 signifying
readiness and 0 indicating otherwise. The readSerial task is created and assigned to a
specific CPU core using xTaskCreatePinnedToCore, with parameters including the task
function, name, stack size (4096 bytes), parameters (NULL), priority (1), and handle
(&readSerialHandle). When msg_flag is 0, indicating no current message processing,
memory for msg_ptr is dynamically allocated using pvPortMalloc. The
configASSERT() function checks for successful memory allocation, triggering an error
and system reset if unsuccessful. The message is then transferred from buf to msg_ptr,
and msg_flag is set to 1 to indicate a new message's readiness. Finally, the buffer (buf)
is cleared using memset, and idx is reset to O in preparation for the next message.

The computer transmitted a command through a serial connection, which was then
verified using a parsing algorithm. This algorithm was incorporated into the sendSerial
task function. The code for the sendSerial function follows.

void sendSerial(void *parameters) {
while (1) {
// Wait for flag to be set and print message
if (msg_flag == 1) {
// Serial.println(msg_ptr);
// Parse command and value
char *token = strtok(msg_ptr, ",");
if (token != NULL) {
strcpy(command, token);
String cmd = String(command);
cmd.trim();
cmd . toUpperCase();
token = strtok(NULL, ",");
if (token != NULL) {
value = atof(token); // Convert to float
if (emd == "Z") {
setZeroSPI(cs_pin);
vTaskDelay (50 / portTICK_PERIOD_MS);
} else if (cmd == "M") {
dutyval = float(value);
}
}

87




if (cmd == "GET") {
Serial.printf("sensor,%u, %1ld, %u\n",
sensorData.absoluteval,
sensorData.incrementalval,
sensorData.limitSwitchStat);

vTaskDelay(2 / portTICK_PERIOD_MS); // Adjust delay as necessary
vPortFree(msg_ptr);

msg_ptr = NULL;
msg_flag = 0;

The “sendSerial” function operates as a FreeRTOS task, designed to interpret serial
commands received by an Arduino ESP32. These commands are stored in the global
‘msg_ptr variable, which is populated by the “readSerial” function. The task initiates
by verifying if ‘'msg_flag™ is set to 1, signaling that a new message is available for
processing. The incoming message is then segmented using “strtok(msg_ptr, ",")",
separating it based on commas. The initial segment is expected to be the command,
with subsequent segments potentially containing related parameters or values. Upon
successful extraction of a segment, it is copied into a ‘command" array using “strcpy .
To ensure uniform command handling, the command string undergoes trimming and is
converted to uppercase, making it case-insensitive. The next segment is extracted as the
expected value using “strtok(NULL, ",")". If a value is present, it's converted to a float
using “atof(token)". The task then responds to specific parsed commands (‘cmd’): For
"Z", it invokes “setZeroSPI(cs_pin)’, which zeros the value of an absolute encoder
controlled via SPI. A 50-millisecond delay is implemented using "vTaskDelay" to allow
the operation to complete. For "M", it assigns the received float "value™ to a global
variable “dutyVal", adjusting the output duty cycle for a BLDC controller through
VESC. For "GET", it transmits a formatted string back to the serial console, containing
sensor data including fields like "absoluteVal", “incrementalVal", and "limitSwitchStat .
After processing, the memory allocated for the message (‘msg_ptr’) is freed using
“vPortFree()” to prevent memory leaks. Finally, ‘'msg_ptr  is set to "NULL", and
‘msg_flag’ is reset to 0, indicating that the message has been processed and the system
is ready for the next command.

The following codes are readLimitSwitchTask and vescTask function implementations.

// Task to read limit switch 1
void readLimitSwitchTask(void *pvParameters) {
while (true) {
leftSwitch = digitalRead(leftSwitch_pin);
rightSwitch = digitalRead(rightSwitch_pin);
sensorData.limitSwitchStat = ©b0000LOOO;
bitWrite(sensorData.limitSwitchStat, 0, leftSwitch);
bitWrite(sensorData.limitSwitchStat, 1, rightSwitch);
vTaskDelay (1 / portTICK_PERIOD_MS);
¥
}

void vescTask(void *pvParameters) {
while (true) {
VescUART.setDuty(dutyval);
//vTaskDelay (1l / portTICK_PERIOD_MS);
¥
}
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The VescUART.h library enables the management of BLDC motors controlled by a
VESC through UART communication, allowing for motor speed adjustments via the
setDuty() function. VESC employs a serial communication protocol, typically over
UART, to accept instructions and setup parameters from a microcontroller like the
ESP32. It utilizes a specific packet format that incorporates command types and related
data to regulate various motor attributes, including speed, current, and duty cycle. The
ESP32 leverages its built-in UART capabilities for data transmission and reception,
operating at a specified baud rate (often 115200 for VESC). The UART pins (such as
TX and RX) are linked to the VESC, enabling two-way communication. The
writeOLED task displays continuously the sensor states which can be obtained from
the data struct named SensorDataStruct. The following piece of code describes the
implementation of the writeOLED function and SensorDataStruct declaration.

// Define the sensor data structure

struct SensorDataStruct {

uintl6_t absoluteVal; // Value from the absolute encoder
long incrementalval; // Value from the incremental encoder
byte limitSwitchStat; // Status of the limit switches

s

// Global variable to hold sensor data
volatile SensorDataStruct sensorData;

// Write the sensor data OLED
void writeOLED(void *pvParameters) {

display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS);

display.display();

vTaskDelay (1000 / portTICK_PERIOD_MS);

// Clear the buffer

display.clearDisplay();

display.setTextSize(1); // Normal 1:1 pixel scale

display.setTextColor(SSD1306_WHITE); // Draw white text

display.setCursor(0, 9);

display.println("Hello World");

display.display();

vTaskDelay (1000 / portTICK_PERIOD_MS);

for (55) {
display.clearDisplay();
display.setCursor(0, 9);
display.println("Sensor Data");
display.print(sensorData.absoluteval);
display.print(", ");
display.print(sensorData.incrementalval);
display.print(", ");
display.println(sensorData.limitSwitchStat);
display.println("Incoming Command");
display.print(command);
display.print(", ");
display.println(value);
display.display();
vTaskDelay (100 / portTICK_PERIOD_MS);
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RESULTS AND DISCUSSION
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Figure 6. Mechanical System of Cart Inverted Pendulum
(Source : Author’s Documentation, 2024)

Figure 6 shows the realization of the design of the tool that has been created to
support this research. There are several mechanical parts of the designed inverted
pendulum cart, which consist of 3D Printed Pulley Block, cart, and 3D Printed
Centering Block. The 3D Printed Pulley Block frame is made of a 1.5 mm iron plate,
and PLA+. On the 3D Printed Pulley Block Frame, there is also a gear reduction to
improve performance, namely the M1 15T and 50T spur gears. The input gear reduction
is connected to the N5065 5065 270kv Brushless Motor and the output gear reduction
will be one shaft with the timing of the HTD5M 10T pulley which will be installed in
a circle on the 3D Printed Centering Block and cart as many as 4 pieces.

The cart line uses an Aluminum slot profile 2040 V-slot. The Cart uses 2 pieces
of 40 mm Universal Plate Gantry which is connected by bolts and support nuts along
with V-wheel solid wheels that will be connected to aluminum slot profiles. The
pendulum mount is made of PLA+ which is given a Flanged F688zz bearing and an
8mm stainless rod as the pendulum arm shaft so that the pendulum can move freely
until it reaches the inverted position. The connection of the stainless rod of the
pendulum shaft and the aluminum sleeve of the pendulum rod is connected with the
PLA+ part. The cart also has an HTD5M belt lock that connects 3 parts made of PLA+.

The 3D Printed Centering Block section has a main frame made of PLA+ and
iron plates as well as free bearing and timing pulleys that function as a counterweight
to the 3D Printed Pulley Block. These components are designed to ensure stability,
strength, and accuracy during operation. This designed component is also equipped
with the need for nut holes and locking bolts that will connect the sensor and parts. In
addition, the mechanical system is assisted by locking on the 3D Printed Pulley Block
and 3D Printed Centering Block to connect the table and cart inverted pendulum so that
the cart inverted pendulum does not experience a shift in the cart inverted pendulum.
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Figure 7. Electrical System of Cart Inverted Pendulum
(Source : Author’s Documentation, 2024)

Figure 7 shows the electrical system that will support the operation of the
appliance. This electrical system is made to control the inverted pendulum cart. The
components used are designed to work together efficiently to maintain the balance of
the pendulum and control the movement of the cart. The output voltage is connected to
the input from the BLDC driver motor and the step-down voltage to meet the voltage
required in the microcontroller, sensor, and voltage converter.

In this system, an actuator in the form of a BLDC N5065 270kv motor is used as
a driving force. To control the motorcycle, a motorcycle driver called an Electronic
Speed Controller (ESC) is used, namely FSESC Flipsky 4.12. The Communication pin
is connected to the ESP32-S3 with the UART Serial using the RX, TX, and GND pins.
The 3-phase FSESC output is connected to a 270kv N5065 BLDC motor. The ESC will
process the read sensor data and will communicate the data through the communication
pins. The ESC will also receive the microcontroller feedback to command the BLDC
motor.

Main Board Controller

SPIESP - AMT103 . B ESP32-83

LARI ESP - FSESC
Stepdawn
Limit Switch

Voltage Converter

SPLESP - AM 1223
Oled Display

Figure 8. Main Board System of Cart Inverted Pendulum
(Source : Author’s Documentation, 2024)

The main board controller is a main board controller of the system, where all
commands are executed and processed. In this mainboard system, there is the brain of
the system, namely the ESP32-S3 microcontroller. The ESP32-S3 will process the data
read by the AMT223, AMT103, and limit switch sensors. The ESP 32 pins used are
GPIO 10, GPIO 11, GPI0 12, GPIO 13, VCC, and GND pins connected to the AMT103
sensor pins to measure the rotational speed of the motor. GPIO 9, GPIO8, VCC and
GND pins are connected to OLED displays. The GPIO 5 and VVCC pins are connected
to the left limit switch and the GP1O 4 and VCC pins are connected to the right limit
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switch used as a buffer or emergency switch.

The AMT223 encoder sensor is used to detect angles on the pendulum shaft. The
encoder sensor is connected to a voltage converter which is used as a voltage converter
from 5V (encoder output) to 3.3V (ESP32-S3 input). This system voltage converter is
used because the ESP32-S3 operates at a logic voltage of 3.3V, so a level shifter is
required for signal compatibility. The wiring circuit is designed using PCB boards to
integrate components, ensuring the flow of data and energy runs efficiently. In addition,
the appliance is equipped with a 24 Volt 10A DC Power Supply power source that
provides stable energy. The power requirements of the components used in the circuit
PCB vary between 3.3 — 5 Volts, therefore the LM2596 stepdown is used.
Communication between the sensor and the ESP32-S3 is regulated through the SPI
communication protocol, while FSESC and ESP communication uses Serial UART
which allows the tool to work automatically and in real-time.

To improve the precision of the cart in balancing the pendulum, the ESP32-S3
microcontroller must generate a PWM signal with a duty cycle that matches the control
algorithm. To integrate FSESC data with ESP32 there are several commands namely
"vesc.getVescValues()". PWM signals with the appropriate duty cycle will be used by
the motor driver to control the power provided to the motor. The duty cycle is the
percentage of signal time at a "high" condition for a full period that has been set. The
duty cycle will affect current and ERPM. The highest duty cycle value set is 90%. The
experiment of the effect of the duty cycle percentage can be seen in figure 9 below.
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Figure 9. Graph Effect of Duty Cycle Percentage on Current and ERPM.
(Source : Author’s Documentation, 2024)

From the experiment on the influence of the duty cycle on current and ERPM
values in BLDC motors above, it can be seen that the duty cycle value has an effect on
the initial inlet current input to the motor. The input current of the motor will experience
a surge at the beginning of the start and then it will be stable. The current value is lower
than that of the current motor, which shows the suitability of the power conversion
theory in VESC. The current value of the motor is greater than the current in, especially
when the duty cycle is high. This is because the duty cycle increases the average voltage
of the motor, so that the motor current rises to meet the required torque. This graph
shows that each increase in the duty cycle affects the amount of current in and motor
current. When the duty cycle is close to maximum, both the current in and the current
motor reach its peak.

The effect of duty cycle value on ERPM (Electrical Revolutions Per Minute) can
be seen in Figure 9. From the graph above, it can be seen that the ERPM value will
increase linearly with the duty cycle, which shows that the average stress to the motor
(generated by the duty cycle) directly affects the rotational speed of the motor. This is
by the characteristics of BLDC motors where the RPM is proportional to the average
voltage applied.
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Figure 10. Graph of the Effect of Continuous Duty Cycle on Currentand ERPM.
(Source : Author’s Documentation, 2024)

To find out the effect of the duty cycle further on continuous conditions, it can be
seen in Figure 10. It can be seen that a continuous duty cycle will affect the value of the
inrush current on the motor and will experience a surge. Then there is a stable position
without a drastic decrease in current as well as ERPM and voltage. So from this
condition it can look better, especially for the service life of BLDC motorcycles because
there is very little voltage and current drop.
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(Source : Author’s Documentation, 2024)

Figure 11 is a duty cycle experiment on a BLDC motor with CW (clockwise) and
CCW (counter clock wise) movements. On the basis of theory, controlling the direction
of rotation of the motor can be done by controlling the commutation system. Where on
the ESC driver there are transistors that will commutate alternately. If the motor is
desired in the opposite direction or CCW then the transistor will be controlled to
commute in reverse order. To reverse the commutation, the Duty cycle sent to the ESC
is a positive value for CW and negative for CCW. So in Figure 11, it can be seen that a
positive duty cycle produces a positive ERPM, while a negative duty cycle produces a
negative ERPM (the motor rotates in the opposite direction). When the duty cycle
returns to zero, the ERPM slowly decreases, which may be the result of mechanical
friction or the influence of the load.
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Figure 12. Graphs Duty Cycle CW and CCW with Fast Time
(Source : Author’s Documentation, 2024)

Figure 11 is a duty cycle experiment on a BLDC motor with CW (clockwise) and
CCW (counter clock wise) movements. Based on theory, controlling the direction of
rotation of the motor can be done by controlling the commutation system. Where on the
ESC driver there are transistors that will commutate alternately. If the motor is desired
in the opposite direction or CCW then the transistor will be controlled to commute in
reverse order. To reverse the commutation, the Duty cycle sent to the ESC is a positive
value for CW and negative for CCW. So in Figure 11, it can be seen that a positive duty
cycle produces a positive ERPM, while a negative duty cycle produces a negative
ERPM (the motor rotates in the opposite direction). When the duty cycle returns to zero,
the ERPM slowly decreases, which may be the result of mechanical friction or the
influence of the load.
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CONCLUSION

It has been shown that BLDC motors with VESC provide efficient and precise
actuation for cart inverted pendulum systems. VESC can control accurate current,
position, and speed through signal communication and input. The validity and
advantages of the integration of ESP32 and BLDC motors with VESC in the design of
the cart inverted pendulum have been verified with electrical, mechanical, and software
systems.
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