Application of Kalman Filter on Gyroscope to Reduce Noise and Improve Responsiveness in Shooting Simulator System
Keywords:
Gyroscope, Responnsiveness, Firing simulator, kalman filterAbstract
Shooting simulators are essential tools in military exercises, enabling soldiers to develop their shooting skills in a controlled and safe environment. However, the effectiveness of these simulators is often hindered by noise in gyroscope sensor data, which is used to track weapon motion. This noise can lead to inaccuracies in determining the position and orientation of the weapon, thereby reducing the precision of aiming and the realism of the simulation. In turn, this affects the responsiveness and overall performance of the training system, potentially diminishing the quality of soldiers’ practice sessions. To address this issue, the implementation of a Kalman filter proves to be highly effective. By processing noisy gyroscope data, the Kalman filter minimizes inaccuracies, enhances motion tracking, and ensures smoother and more realistic weapon handling during simulation. This
improvement not only boosts the accuracy of the simulator but also ensures a more reliable and responsive training experience for soldiers
References
Articles from the Journals
Adi, I. M. T., Widiatmoko, D., & Suryadi, K. (2022). Elektronika Sistem Senjata Pengisi Munisi Pada Magazen Senjata Ss2-V4 Berbasis Arduino Mega 2560 Guna Mendukung Latihan Menembak: Teknologi. Jurnal Elkasista, 3(1), 29-34.
Alfian, R. I., Ma'arif, A., & Sunardi, S. (2021). Noise reduction in the accelerometer and gyroscope sensor with the Kalman filter algorithm. Journal of Robotics and Control (JRC), 2(3), 180-189.
Ansori, M. (2020). Rancang Bangun Sistem Pemantau Posisi Personel Patroli Keamanan Menggunakan Modul Node Mcu Esp 8266 Mod Berbasis Iot. Jurnal Elkasista, 1(1).
Asnada, R. T., & Sulistyono, S. (2020). Pengaruh Inertial Measurement Unit (IMU) MPU-6050 3-Axis Gyro dan 3-Axis Accelerometer pada Sistem Penstabil Kamera (Gimbal) Untuk Aplikasi Videografi. Jurnal Teknologi Elektro, 11(1), 48-55.
Fadillah, B. A., Putrada, A. G., & Abdurohman, M. (2022). A wearable device for enhancing basketball shooting correctness with mpu6050 sensors and support vector machine classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control.
Huo, Z., Wang, F., Shen, H., Sun, X., Zhang, J., Li, Y., & Chu, H. (2022). Optimal compensation of MEMS gyroscope noise Kalman filter based on conv-DAE and MultiTCN-attention model in static base environment. Sensors, 22(19), 7249.
Nwadiugwu, W. P., Kim, S. H., & Kim, D. S. (2021). Precise-point-positioning estimations for recreational drones using optimized cubature-extended kalman filtering. IEEE Access, 9, 134369-134383.
Tritunggal, F. A., Pradana, C., & Pradani, E. R. K. (2023). Sistem Deteksi Gempa Otomatis Berbasis Mikrokontroler Arduino dan Sensor Accelerometer MPU6050. Metrotech (Journal of Mechanical and Electrical Technology), 2(2), 98-104.
Utomo, B., Setyaningsih, N. Y. D., & Iqbal, M. (2020). Kendali Robot Lengan 4 Dof Berbasis Arduino Uno Dan Sensor Mpu-6050. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 11(1), 89-96.
Xue, L., Jiang, C. Y., Chang, H. L., Yang, Y., Qin, W., & Yuan, W. Z. (2012). A novel Kalman filter for combining outputs of MEMS gyroscope array. Measurement, 45(4), 745-754.
Xue, L., Wang, L., Xiong, T., Jiang, C., & Yuan, W. (2014). Analysis of dynamic performance of a Kalman filter for combining multiple MEMS gyroscopes. micromachines, 5(4), 1034-1050.
Yang, F., & Mao, Q. (2023). Auto-Evaluation Model for the Prediction of Building Energy Consumption That Combines Modified Kalman Filtering and Long Short-Term Memory. Sustainability, 15(22), 15749.
Yu, F., Li, C., & Shao, Y. (2024). DNTC: An unsupervised Deep Networks for Temperature Compensation in non-stationary data. Engineering Applications of Artificial Intelligence, 127, 107319.
Proceedings
Kang, D., Jang, C., & Park, F. C. (2019). Unscented Kalman filtering for simultaneous estimation of attitude and gyroscope bias. IEEE/ASME Transactions On Mechatronics, 24(1), 350-360.
Karahoda, Bertan; Mehmeti, Xhemajl; and Cabra, Uran, "Noise reduction in Quadcopter Accelerometer and Gyroscope Measurements based on Kalman filter" (2015). UBT International Conference. 42.
https://knowledgecenter.ubt-uni.net/conference/2015/all-events/42
Maidanov, A. K., Canbolat, H., & Atanov, S. K. (2023, May). Optimizing GPS and Gyroscope Data for Military Missions. In 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST) (pp. 527-531). IEEE.
Setiawan, R., Triharminto, H. H., & Fahrurozi, M. (2021). Gesture Control Menggunakan IMU MPU 6050 Metode Kalman Filter Sebagai Kendali Quadcopter. In Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia p-ISSN (Vol. 2086, p. 5805).